POPULATION SURVEY AND SAMPLE STUDY

POPULATION SURVEY AND SAMPLE STUDY

Sampling is that part of statistical practice concerned with the selection of a subset of individuals from within a population to yield some knowledge about the whole population, especially for the purposes of making predictions based on statistical inference.
Researchers rarely survey the entire population for two reasons the cost is too high, and the population is dynamic in that the individuals making up the population may change over time. The three main advantages of sampling are that the cost is lower, data collection is faster, and since the data set is smaller it is possible to ensure homogeneity and to improve the accuracy and quality of the data.

The sampling process comprises several stages:
1. Defining the population of concern
2. Specifying a sampling frame, a set of items or events possible to measure
3. Specifying a sampling method for selecting items or events from the frame
4. Determining the sample size
5. Implementing the sampling plan
6. Sampling and data collecting
Population definition
Successful statistical practice is based on focused problem definition. In sampling, this includes defining the population from which our sample is drawn. A population can be defined as including all people or items with the characteristic one wishes to understand. Because there is very rarely enough time or money to gather information from everyone or everything in a population, the goal becomes finding a representative sample (or subset) of that population.
Sampling frame
In the most straightforward case, such as the sentencing of a batch of material from production (acceptance sampling by lots), it is possible to identify and measure every single item in the population and to include any one of them in our sample. However, in the more general case this is not possible. There is no way to identify all rats in the set of all rats. Where voting is not compulsory, there is no way to identify which people will actually vote at a forthcoming election (in advance of the election). These imprecise populations are not amenable to sampling in any of the ways below and to which we could apply statistical theory.
Probability and non-probability sampling
A probability sampling scheme is one in which every unit in the population has a chance (greater than zero) of being selected in the sample, and this probability can be accurately determined. The combination of these traits makes it possible to produce unbiased estimates of population totals, by weighting sampled units according to their probability of selection.
Non probability sampling is any sampling method where some elements of the population have no chance of selection (these are sometimes referred to as 'out of coverage'/'undercovered'), or where the probability of selection can't be accurately determined. It involves the selection of elements based on assumptions regarding the population of interest, which forms the criteria for selection. Hence, because the selection of elements is nonrandom, non probability sampling does not allow the estimation of sampling errors.
Sampling methods
Within any of the types of frame identified above, a variety of sampling methods can be employed, individually or in combination. Factors commonly influencing the choice between these designs include:
Nature and quality of the frame
1. Availability of auxiliary information about units on the frame
2. Accuracy requirements, and the need to measure accuracy
3. Whether detailed analysis of the sample is expected
4. Cost/operational concerns
5. Simple random sampling
In a simple random sample ('SRS') of a given size, all such subsets of the frame are given an equal probability. Each element of the frame thus has an equal probability of selection: the frame is not subdivided or partitioned. Furthermore, any given pair of elements has the same chance of selection as any other such pair (and similarly for triples, and so on).
Simple random sampling is always an EPS design, but not all EPS designs are simple random sampling.
Systematic sampling
Systematic sampling relies on arranging the target population according to some ordering scheme and then selecting elements at regular intervals through that ordered list. Systematic sampling involves a random start and then proceeds with the selection of every kth element from then onwards.
Stratified sampling
Where the population embraces a number of distinct categories, the frame can be organized by these categories into separate "strata." Each stratum is then sampled as an independent sub-population, out of which individual elements can be randomly selected. There are several potential benefits to stratified sampling.
First, divi
A stratified sampling approach is most effective when three conditions are met
- Variability within strata are minimized
- Variability between strata are maximized
The variables upon which the population is stratified are strongly correlated with the desired dependent variable.
Advantages over other sampling methods
1. Focuses on important subpopulations and ignores irrelevant ones.
2. Allows use of different sampling techniques for different subpopulations.
3. Improves the accuracy/efficiency of estimation.
4. Permits greater balancing of statistical power of tests of differences between strata by sampling equal numbers from strata varying widely in size.
Disadvantages
1. Requires selection of relevant stratification variables which can be difficult.
2. Is not useful when there are no homogeneous subgroups.
3. Can be expensive to implement.
Post stratification
Stratification is sometimes introduced after the sampling phase in a process called "post stratification". This approach is typically implemented due to a lack of prior knowledge of an appropriate stratifying variable or when the experimenter lacks the necessary information to create a stratifying variable during the sampling phase. Although the method is susceptible to the pitfalls of post hoc approaches, it can provide several benefits in the right situation. Implementation usually follows a simple random sample. In addition to allowing for stratification on an ancillary variable, poststratification can be used to implement weighting, which can improve the precision of a sample's estimates.
Oversampling
Choice-based sampling is one of the stratified sampling strategies. In choice-based sampling, the data are stratified on the target and a sample is taken from each stratum so that the rare target class will be more represented in the sample. The model is then built on this biased sample. The effects of the input variables on the target are often estimated with more precision with the choice-based sample even when a smaller overall sample size is taken, compared to a random sample. The results usually must be adjusted to correct for the oversampling.
Probability proportional to size sampling
In some cases the sample designer has access to an "auxiliary variable" or "size measure", believed to be correlated to the variable of interest, for each element in the population. These data can be used to improve accuracy in sample design. One option is to use the auxiliary variable as a basis for stratification, as discussed above.
Another option is probability-proportional-to-size ('PPS') sampling, in which the selection probability for each element is set to be proportional to its size measure, up to a maximum of 1. In a simple PPS design, these selection probabilities can then be used as the basis for Poisson sampling.
The PPS approach can improve accuracy for a given sample size by concentrating sample on large elements that have the greatest impact on population estimates. PPS sampling is commonly used for surveys of businesses, where element size varies greatly and auxiliary information is often available - for instance, a survey attempting to measure the number of guest-nights spent in hotels might use each hotel's number of rooms as an auxiliary variable. In some cases, an older measurement of the variable of interest can be used as an auxiliary variable when attempting to produce more current estimates.
Cluster sampling
Sometimes it is cheaper to 'cluster' the sample in some way e.g. by selecting respondents from certain areas only, or certain time-periods only. (Nearly all samples are in some sense 'clustered' in time - although this is rarely taken into account in the analysis.)
Cluster sampling is an example of 'two-stage sampling' or 'multistage sampling': in the first stage a sample of areas is chosen; in the second stage a sample of respondentswithin those areas is selected.
Multistage sampling
Multistage sampling is a complex form of cluster sampling in which two or more levels of units are embedded one in the other. The first stage consists of constructing the clusters that will be used to sample from. In the second stage, a sample of primary units is randomly selected from each cluster (rather than using all units contained in all selected clusters). In following stages, in each of those selected clusters, additional samples of units are selected, and so on. All ultimate units (individuals, for instance) selected at the last step of this procedure are then surveyed.
Matched random sampling
A method of assigning participants to groups in which pairs of participants are first matched on some characteristic and then individually assigned randomly to groups.
The procedure for matched random sampling can be briefed with the following contexts,
Two samples in which the members are clearly paired, or are matched explicitly by the researcher. For example, IQ measurements or pairs of identical twins.
Those samples in which the same attribute, or variable, is measured twice on each subject, under different circumstances. Commonly called repeated measures. Examples include the times of a group of athletes for 1500m before and after a week of special training; the milk yields of cows before and after being fed a particular diet.
Quota sampling
In quota sampling, the population is first segmented into mutually exclusive sub-groups, just as in stratified sampling. Then judgment is used to select the subjects or units from each segment based on a specified proportion. For example, an interviewer may be told to sample 200 females and 300 males between the age of 45 and 60
Convenience sampling or Accidental Sampling
Convenience sampling (sometimes known as grab or opportunity sampling) is a type of nonprobability sampling which involves the sample being drawn from that part of the population which is close to hand. That is, a sample population selected because it is readily available and convenient.This type of sampling is most useful for pilot testing. Several important considerations for researchers using convenience samples include:
Are there controls within the research design or experiment which can serve to lessen the impact of a non-random convenience sample, thereby ensuring the results will be more representative of the population?
Is there good reason to believe that a particular convenience sample would or should respond or behave differently than a random sample from the same population?
Is the question being asked by the research one that can adequately be answered using a convenience sample?
In social science research, snowball sampling is a similar technique, where existing study subjects are used to recruit more subjects into the sample.
Line-intercept sampling
Line-intercept sampling is a method of sampling elements in a region whereby an element is sampled if a chosen line segment, called a “transect”, intersects the element.
Panel sampling
Panel sampling is the method of first selecting a group of participants through a random sampling method and then asking that group for the same information again several times over a period of time. Therefore, each participant is given the same survey or interview at two or more time points; each period of data collection is called a "wave". This sampling methodology is often chosen for large scale or nation-wide studies in order to gauge changes in the population with regard to any number of variables from chronic illness to job stress to weekly food expenditures.
Event sampling methodology
Event sampling methodology (ESM) is a new form of sampling method that allows researchers to study ongoing experiences and events that vary across and within days in its naturally-occurring environment. Because of the frequent sampling of events inherent in ESM, it enables researchers to measure the typology of activity and detect the temporal and dynamic fluctuations of work experiences. Popularity of ESM as a new form of research design increased over the recent years because it addresses the shortcomings of cross-sectional research, where once unable to, researchers can now detect intra-individual variances across time. In ESM, participants are asked to record their experiences and perceptions in a paper or electronic diary.
There are three types of ESM:
Signal contingent – random beeping notifies participants to record data. The advantage of this type of ESM is minimization of recall bias.
Event contingent – records data when certain events occur
Interval contingent – records data according to the passing of a certain period of time

Sample size

Formulas, tables, and power function charts are well known approaches to determine sample size.
Formulas
Where the frame and population are identical, statistical theory yields exact recommendations on sample size. However, where it is not straightforward to define a frame representative of the population, it is more important to understand the cause system of which the population are outcomes and to ensure that all sources of variation are embraced in the frame.
Steps for using sample size tables
Postulate the effect size of interest, α, and β.
Check sample size table
Select the table corresponding to the selected α
Locate the row corresponding to the desired power
Locate the column corresponding to the estimated effect size.
The intersection of the column and row is the minimum sample size required.
Sampling and data collection
Good data collection involves:
1. Following the defined sampling process
2. Keeping the data in time order
3. Noting comments and other contextual events
4. Recording non-responses
5. Most sampling books and papers written by non-statisticians focus only in the data collection aspect, which is just a small though important part of the sampling process.
Errors in sample surveys

Survey results are typically subject to some error. Total errors can be classified into sampling errors and non-sampling errors. The term "error" here includes systematic biases as well as random errors.
Sampling errors and biases
Sampling errors and biases are induced by the sample design. They include:
Selection bias: When the true selection probabilities differ from those assumed in calculating the results.
Random sampling error: Random variation in the results due to the elements in the sample being selected at random.
Non-sampling error
Non-sampling errors are caused by other problems in data collection and processing. They include:
Overcoverage: Inclusion of data from outside of the population.
Undercoverage: Sampling frame does not include elements in the population.
Measurement error: E.g. when respondents misunderstand a question, or find it difficult to answer.
Processing error: Mistakes in data coding.
Non-response: Failure to obtain complete data from all selected individuals.

Survey weights


In many situations the sample fraction may be varied by stratum and data will have to be weighted to correctly represent the population. Thus for example, a simple random sample of individuals in the United Kingdom might include some in remote Scottish islands who would be inordinately expensive to sample. A cheaper method would be to use a stratified sample with urban and rural strata. The rural sample could be under-represented in the sample, but weighted up appropriately in the analysis to compensate.

Post a Comment

0 Comments